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Abstract—In the world of electric vehicle (EV) navigation, the 

quest for the best routing algorithms is crucial for creating 

efficient and sustainable transportation options. Conventional 

methods like Dijkstra’s Algorithm show limitations in scalability 

and adaptability in changing conditions, which require frequent 

adjustments. This study supports using Ant-Colony Optimization 

(ACO), Genetic Algorithm (GA), and Simulated Annealing (SA) as 

heuristic techniques to optimize EV routes. A comprehensive 

assessment of several optimization algorithms for solving the 

Electric Vehicle Routing Problem (EVRP) provided valuable 

information on their efficiency and effectiveness. This research 

evaluates Ant-Colony Optimization (ACO), Genetic Algorithm 

(GA), and Simulated Annealing (SA) as possible approaches to 

optimize the Electric Vehicle Routing Problem (EVRP). ACO 

stands out as the top contender, showing better precision and 

dependability in providing the best routing options for various 

EVRP situations. In spite of the extended computational duration, 

ACO stands out in pinpointing the most optimal travel distances, 

making it a strong option for EVRP optimization. Simulated 

Annealing shows respectable performance despite some 

variability, coming in behind Genetic Algorithm in ranking for 

finding the shortest routes. ACO’s effectiveness in addressing 

convergence problems and providing eco-friendly transportation 

solutions makes it the top choice for optimizing EV routing. The 

provided visual representation explains how ACO works by 

showing the most efficient routes between set map points, 

strategically connected to charging stations for user convenience. 

Index Terms—Nature Inspired Computing Techniques, Ant 

Colony Optimisation, Genetic Algorithms, Simulated Annealing 

I. INTRODUCTION

Electric vehicles (EVs) present a sustainable option compared 

to conventional fossil fuel cars, positioning them as a promising 

advancement in the automotive sector. However, worries about 

the limited distance that electric vehicles can travel, known as 

”range anxiety,” still hinder their widespread use [1]. It is 

essential to tackle these issues to increase the use of electric 

vehicles in everyday transportation situations. 

This article introduces a new strategy for dealing with EV range 

anxiety by applying optimization techniques such as Ant 

Colony Optimization (ACO), Genetic Algorithm (GA), and 

Simulated Annealing (SA) algorithms. [2] This research 

acknowledges that these algorithms are efficient in navigating 

complex networks, which makes them suitable for addressing 

the Electric Vehicle Routing Problem (EVRP). The goal is to 

enhance EV routes by integrating these algorithms with 

existing traffic and charging station information in order to 

develop a strong solution that considers both energy 

consumption and arrival time. [3] 

Based on ants’ foraging behavior, the ACO algorithm optimizes 

paths by simulating ant communication with pheromones, 

providing a distinctive approach . ACO algorithms imitate 

behavior to find the best routes with charging stations for 

electric cars, reducing range anxiety and improving travel 

efficiency. Furthermore, as stated by Rao et al. in 2019, the 

Genetic Algorithm and Simulated Annealing approaches offer 

unique but compatible ways to improve route efficiency when 

dealing with the EVRP. The aim is to offer useful information 

on how efficient and practical these optimization algorithms are 

in reducing EV range anxiety by evaluating and comparing 

their performance. Researchers carry out empirical analysis and 

experiments to prove the efficiency of these algorithms in 

enhancing EV route planning, aiming to promote sustainable 

transportation and diminish environmental effects. [4] 

II. RELATED WORK

A. Temporal Multi-Objective Ant Colony Optimization for EV

Routing

Zhang et al.(2016) [5] proposed a novel temporal

multiobjective ant colony optimization (ACO) algorithm

tailored for electric vehicle (EV) routing, addressing various

drivers’ requirements under stochastic traffic conditions. Their

algorithm optimizes route length, traveling time, energy

consumption, battery recycling lifetime, and cabin temperature

while meeting constraints on arrival time and state of charge.

Through simulation experiments and comparative analysis with

existing ACO methods, their study demonstrates superior

convergence performance and solution distribution,
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showcasing the effectiveness of their approach in generating 

optimized 

B. Genetic Algorithm for Two-Echelon EV Routing Problem

Zhang et al(2020) [6] developed a mathematical model for the 

two-echelon electric vehicle routing problem (2E-EVRP) and 

designed a heuristic algorithm, specifically targeting the 

challenges of high cargo load and high timeliness distribution 

in the logistics industry. Their genetic algorithm addresses both 

the multiple depot vehicle routing problem (MDEVRP) and the 

split delivery vehicle routing problem (SDVRP), aiming to 

optimize total path length. Through experimentation with a 

logistics company in Beijing, they validate the efficiency of 

their algorithm, showcasing significant optimization gains 

compared to traditional methods such as simulated annealing. 

C. Multi-Objective Simulated Annealing for PRT Vehicle

Management

Chebbi and Siala [7] proposed a multi-objective simulated 

annealing (MOSA) algorithm for routing electric vehicles with 

limited battery capacity in Personal Rapid Transit (PRT) 

systems. Their study focuses on minimizing both total energy 

consumption and the number of vehicles used, employing a 

Pareto-dominant-based fitness strategy to accept new solutions. 

Through computational analyses on various instances, they 

demonstrate the effectiveness of MOSA in optimizing routing 

plans for EVs within PRT systems, highlighting its potential for 

addressing complex multi-objective optimization problems in 

transit management. 

D. ACO for EV Routing with Recharging Stations

Mavrovouniotis et al. [8] extended ant colony optimization 

(ACO) to address the unique challenges of the Electric Vehicle 

Routing Problem (EVRP), considering factors such as 

uncertain energy levels and the need for recharging stations. 

Their ACO-EVRP approach incorporates a look-ahead strategy 

to ensure feasible routes for EV fleets, as demonstrated through 

simulations on benchmark problems. By leveraging ACO’s 

ability to adapt to dynamic environments, their study provides 

a robust solution for optimizing EV routing while considering 

the availability of recharging infrastructure. 

E. Genetic Algorithm for Autonomous EV Min-Max Routing

Fazeli et al. [1] tackle the optimization of routing strategies for 

fleets of autonomous electric vehicles (AEVs) with limited 

battery capacity and sparse charging infrastructure. Their 

proposed genetic algorithm-based meta-heuristic targets the 

min-max AEV routing problem, aiming to minimize the 

maximum distance traveled while considering charging station 

availability. Through extensive computational analyses and 

simulations, they showcase the efficacy of their approach in 

addressing range anxiety and optimizing routing strategies for 

AEVs, highlighting its potential to enhance the efficiency and 

sustainability of autonomous electric transportation systems. 

III. ELECTRIC VEHICLE ROUTING PROBLEM

A fully connected weighted graph G = (A ∪ F, L) models an 

EVRP instance, where A = {1,...,n} is a set of n customers 

(nodes), F = {n + 1,...,n + s} ∪ {0} is a set of s energy 

recharging stations including a central depot 0, 

L = {(a,b)|a,b ∈ A} 

is a set of links. Each link (a, b) has a non-negative value tab = 

R+ representing travel time between customers a and b, defined 

as 

tab = dab/sab, (1) 

The distance (dab) and average speed (sab) for each arc (a,b) ∈ L 

are given in kilometers and kilometers per hour, respectively. 

Each customer a ∈ A has a non-negative demand δa for goods 

to be delivered by m vehicles, with an associated service time 

σa. The service time σa is proportional to the demand, with 

higher demand requiring more service time.The vehicle load of 

an EV, k, on arc (a,b) is denoted by l
ab

k (0 ≤ l
ab

k ≤ Q), where Q 

is the maximum vehicle capacity. The maximum service time 

for each EV is J minutes, determining maximum working 

hours. Each recharging station a ∈ F has a waiting time wa for 

possible wait times, with a constant battery recharging rate r for 

all charging stations. 

Each electric vehicle (EV) arriving at a customer or recharging 

station has a battery level (represented as ) that ranges from 

0 to the maximum capacity (BC). The charging time (ck
b) at a 

station (a ∈ F) depends on the current energy level and the 

charging rate, calculated as (BC − ek
a)/r for a full charge. All 

EVs start the day fully charged and loaded at the depot. 

The goal is to minimize total travel time by finding the smallest 

set of EVs that visits each customer once, starting and ending 

at the depot, satisfying their demands. A complete solution for 

EVRP involves a permutation of nodes (customers and 

recharging stations) and includes the routes for all EVs 

[9]. 

IV. PROPOSED METHODOLOGY

This paper discusses multiple approaches to address the electric 

vehicle (EV) routing issue, such as the GA, SA, and PSO 

algorithms, before advocating for the Ant Colony Optimization 

(ACO) algorithm. 

A. Genetic algorithms

JH Holland developed genetic algorithms (GA) in Michigan, 

USA, in the 1960s, categorizing them as evolutionary 

algorithms. GA is based on evolution through natural selection. 

It consists of three components: selection, crossover, and 

mutation. The population of solutions is generated, with a 

selection of solutions based on fitness to become parents for 

offspring generation through crossover. Offspring undergo a 

mutation process for population diversification. With better 

solutions having a higher probability of being chosen for  
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crossover and mutation maintaining some parent features, new 

generations are assumed to provide improved results. [10] This 

iterative process is continued through generations to find the 

optimal solution. 

        TABLE I 

  BASIC GA PARAMETER VALUES 

Algorithm 1 GA-VRP 

1: pop ← InitializePopulation(popsize) 

2: g ← 0 

3: while (g ¡ maxgen and term not satisfied) do 

4: EvalFitness(pop) 

5: selected ← Selection(pop) 

6: offspring ← Crossover(selected) 

7: mutated ← Mutation(offspring) 

8: pop ← Replace(pop, mutated) 

9: g ← g + 1 

10: end while 

11: OUTPUT: Best solution found in the population 

The fitness function in GAs for the VRP evaluates a solution’s 

quality by minimizing total distance, balancing workload, and 

meeting capacity constraints. Fitness is determined by the total 

distance traveled per vehicle, the customer visit sequence 

considered. [11] 

Fitness = (α * TotalDist) + (β * WorkImbalance) + (γ * 

CapViolation) 

where α, β, γ are weight coefficients. Total distance is the sum of 

distances between visited customers. Workload imbalance is 

measured by workload standard deviation or max difference. 

Capacity violation is demand exceeding vehicle capacity. 

B. Simulated annealing

Kirkpatrick et al. devised the Simulated Annealing (SA) 

method, which is a meta-heuristic approach inspired by solids’ 

annealing process. This method includes heating a material and 

then gently cooling it to generate a strong crystalline structure. 

In optimisation, the feasible solution is the system, with the 

energy state being the target function. [12] The optimum 

solution is linked to the lowest energy state. SA can avoid local 

optima, which slows convergence, and it is a memory-less  

method that does not require information from the search 

process. In each iteration, the algorithm generates a random 

neighbour and accepts the neighbour solution if it improves the 

objective function. Otherwise, it will use the metropolis criteria 

to determine whether to accept the answer. [13] This criterion 

employs a Boltzmann distribution-based acceptance 

probability that is determined by the goal value’s current 

temperature (T0) and energy degradation (DE). [14] 

TABLE II 

SA PARAMETERS VALUES 

Attribute Value 

Initial 

temperature 

1000 

Cooling rate 0.003 

Algorithm 2 SA-VRP 

1: Initialize T 

2: Initialize π 

3: while (term condition not satisfied) do 

4: for i from 1 to max iter per T do 

5: Perturb π to obtain π new 

6: Calculate Δf = f(π new) - f(π) 

7: if (Δf ¡ 0) or (exp(-Δf / T) ¿ rand(0, 1)) then 

8: Accept π ← π new 

9: end if 

10: end for 

11: Update T: T ← cool(T) 

12: end while 

13: OUTPUT: Best solution π 

The acceptance probability is calculated as, P 

= exp((F(curr) - F(new))T, 

where T represents the temperature, allowing worse solutions 

to be accepted more frequently at higher temperatures and less 

as the temperature decreases. 

C. Particle Swarm Optimisation

PSO was introduced by Kennedy and Eberhart in 1995 as a 

population-based metaheuristic inspired by the behavior of 

organisms like birds and fish searching for food. Each particle 

in the population has its own position and speed, sharing 

information with others to adjust accordingly. [15] 

Optimization is achieved through adjustments based on 

individual (Pbest) and global best (Gbest) positions. The 

position and speed of each particle is updated in the process. 

Attribute Value 

Mutation Rate 0.06 

Population size 2000 

Population 

generation 

100 
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Algorithm 3 PSO-VRP 

1: Init particles P 

2: Init global best solution gbest 

3: while (term not satisfied) do 

4: for each particle p in P do 

5: Update vel and pos: 

6: v p = w * v p + c1 * rand() * (pbest p - x p) 

+ c2 * rand() * (gbest - x p)

7: x p = x p + v p 

8: Evaluate fitness 

9: if (fitness of p ¡ fitness of gbest) then 

10: Update gbest: gbest = p 

11: end if 

12: end while 

13: OUTPUT: Best solution π 

D. Ant Colony Optimisation

The ACO algorithm is utilized in the proposed methodology to 

solve the EV routing problem, with specified objective 

functions, constraints, and parameters. The ACO technique is 

inspired by the foraging behavior of ant colonies, introduced by 

Marco Dorigo in the 1990s. Ants prefer community survival 

over individual species, communicating through sound, touch, 

and pheromones. Pheromones are chemical compounds emitted 

by ants to trigger a social response within the same species. The 

ACO algorithm efficiently finds near-optimal solutions in 

complex problems at a low 

computational cost. [16] 

Algorithm 4.1 ACO-EVRP 

1: Set t = 0 

2: InitPheromTrails(τ0) 

3: while (term not satisfied) do 

4: ConstructSol 

5: Find πab (Best solution for current iteration) 

6: If(Objective value of πab < Objective value of πbs) 

7: Update πbs with πab 

8: EndIf 

9: PheromUpdate 

10: Increment t: t = t + 1 

11: EndWhile 

12: OUTPUT: πbs 

Defining the objective function, constraints, and parameters is 

essential when applying the ACO algorithm to the EV routing 

problem. The objective is to decrease travel time and energy 

consumption, influenced by various factors. Constraints 

guarantee the EV reaches its destination with charge remaining 

and meets user preferences. Parameters include particle  

number, iteration limit, and exploration/exploitation 

coefficients. 

TABLE III 

BASIC ACO PARAMETER VALUES 

Parameter Value 

alpha −0.2

beta 9.6

pheromone 

resistance 

0.3

initial 

pheromone 

0.8

number of ants 2048 

The configuration sets up essential global variables for 

simulating an EVRP by defining parameters like ’shortest path’, 

’shortest distance’, ’cars’, ’chargers’, ’distances’, 

’pheromones’, and ’ants’, along with associated values like 

’num ants’, ’dst power’, ’pheromone  power’, ’evaporation 

rate’, and ’pheromone intensity’. It also loads images for cars 

and chargers, specifies screen size, and sets frame rate. The 

function ’load image rgb’ is described for BGR to RGB image 

conversion. ’spawn ants’ generates ant agents ensuring the 

presence of chargers and cars, initializes charger slots, and 

assigns attributes for ants like ’distanceTraveled’, ’carsVisited’, 

’chargerSlots’, ’location’, and ’nodesVisited’, adding them to 

the ant list for simulation. 

Algorithm 4.2 SpawnAnts 

1: Function spawn ants 

2: If |C| > 0 and |V | > 0 

3: S ← {i : 2 for i in range(|C|)} 

4: For  in range( N ) 

5: l← {′t′ :′ : 

random integer between 0 and |V |} 

6: copy(), 
′l′ : l,′ n′ : [l.copy()]} 

7: Add a to A 

8: EndFor 

9: EndIf 

10: EndFunction 

The ResetShortestPath function is a crucial part of the Electric 

Vehicle Routing Problem (EVRP) algorithm as it initializes 

important variables for the simulation to progress. Setting 

’shortest_path’ to None clears any previous shortest path 

information, ensuring a fresh start for the algorithm. [17] 

Additionally, initializing 
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’shortest_distance’ to infinity provides a reference point for 

newly calculated distances. This proactive approach prepares 

the EVRP algorithm for success by offering a clean slate for 

optimal routing solutions to be developed. 

In the following SaveShortestPath function, the algorithm 

utilizes an iterative method to enhance the shortest path 

calculation during the simulation. By looping through each ant 

in the environment, the function evaluates their traveled 

distance and compares it with the current shortest distance. If 

an ant’s path is shorter, shortest_path is updated with their 

visited nodes and shortest_distance is refreshed with the new 

minimal distance. This iterative approach helps the algorithm 

adjust to changing route conditions, refining its understanding 

of efficient paths. The SaveShortestPath function is crucial in 

guiding the EVRP algorithm towards an optimal solution, 

supporting efficient route planning in complex logistics. 

Algorithm 4.3 CalculateProbabilities 

1: Functioncalculate probabilitesD,P 

2: D ← EnsureNonZero(D) 

3: 

4: return Normalize(des) 5: 

EndFunction 

In addition to technical aspects, the suggested approach will 

take into account user experience. The goal is to develop a user-

friendly and intuitive interface for the navigation application, 

enabling users to input their destination, choose charging 

stations, and modify their route in real-time easily. Through a 

blend of advanced optimization strategies and a user-focused 

approach, a navigation solution can be developed to address EV 

range anxiety and improve the driving experience. [1] 

V. RESULTS AND DISCUSSIONS

The assessment of multiple optimization algorithms for 

addressing the Electric Vehicle Routing Problem (EVRP) 

provided valuable insights into their performance and 

effectiveness. Ant Colony Optimization (ACO) stood out as the 

top performer in terms of identifying the most efficient travel 

distance. [10] Despite its longer execution time compared to 

other algorithms, ACO excelled in finding the shortest route 

and maintained competitive performance. Its exceptional 

accuracy in solving optimal distance between cities makes it a 

strong choice for EVRP optimization. Similarly, ACO’s reliable 

performance even under convergence conditions highlights its 

effectiveness in solving routing problems with different levels 

of complexity. 

TABLE IV 

ACO ALGORITHM 

Map 

Name 

Nodes Time(s) Distance Accuracy 

Map A 127 29 124651.524 0.95435 

Map B 52 5 721.098 0.95724 

Map C 535 64 1510.321 0.97425 

TABLE V 

GA ALGORITHM 

Map 

Name 

Nodes Time(s) Distance Accuracy 

Map A 127 4 419224.465 0.95435 

Map B 52 7 11551.312 0.95724 

Map C 535 28 9466.576 0.97425 

TABLE VI 

SA ALGORITHM 

Map 

Name 

Nodes Time(s) Distance Accuracy 

Map A 127 0.3 265289.381 0.95435 

Map B 52 0.9 10768.876 0.95724 

Map C 535 16 6471.753 0.97425 

Although Genetic Algorithm (GA) ranked second in finding the 

shortest route, it had slower execution times, making it less 

ideal for real-time EVRP optimization. [18] Simulated 

Annealing (SA) exhibited impressive performance in terms of 

execution times and convergence behavior, but struggled to 

consistently find the shortest distance, especially with 

increasing nodes. This indicates that SA may need more 

iterations to converge, limiting its practical use in time-

sensitive EVRP 

scenarios. [14] 

ACO’s superior performance in determining the most efficient 

travel distance and its ability to overcome convergence 

challenges make it the top choice for EVRP optimization. [19] 

By utilizing pheromone trails and effectively exploring solution 

space, ACO delivers unparalleled accuracy and reliability in 

providing optimal routing solutions for various levels 
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Fig. 1. Evolution of GA, ACO, and SA findings over time(s) for 

Maps A, B, and C 

Fig. 2. Evolution of GA, ACO, and SA results across distance 

(km) for Maps A, B, and C. 

of complexity in EVRP instances. The accompanying graph 
demonstrates how ACO algorithms function, showing the 

closest and most optimized route between two map coordinates. 

The red lines represent the optimized path for the best route, 
while the black lines display all possible routes. The red lines 

also feature the highest number of charging stations along the 

optimized path. [16]  

Fig. 3. Evolution of GA, ACO, and SA accuracy over time 

(seconds) for Map A, Map B, and Map C. 

VI. CONCLUSION

The user will input their desired destination location. Given the 

car’s current position, we can determine the general direction it 

should head towards. Initialisation particles for ACO will be 

based on routes in this direction. The car’s current charge level 

will be requested to decide if a charging stop is needed, 

impacting the cost function. Particles will be adjusted based on 

actual distance and turns taken. Each particle’s cost will 

consider total distance, proximity to charging stations, and 

preference for straight roads. Once the most optimal path cost 

stabilizes, it will be manually checked for user destination and 

charging station proximity. If checks fail, a new seed solution 

will be used to generate alternative paths, reducing compute 

time for mobile and on-car devices. 

The final path will be displayed on Google Maps for user 

convenience. 

The results offer helpful guidance for professionals and 

scholars in logistics and optimization, aiding in choosing 

suitable algorithms for tackling intricate routing issues in 

electric vehicle operations. Future studies could investigate 

combining methods and improving algorithms to boost ACO’s 

efficiency and scalability in solving extensive EVRP cases, 

advancing sustainable transportation planning and 

management. 
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